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Stochastic resonance and dynamic first-order pseudo-phase-transitions in the irreversible growth
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We study the irreversible growth of magnetic thin films under the influence of spatially periodic fields by means
of extensive Monte Carlo simulations. We find first-order pseudo-phase-transitions that separate a dynamically
disordered phase from a dynamically ordered phase. By analogy with time-dependent oscillating fields applied
to Ising-type models, we qualitatively associate this dynamic transition with the localization-delocalization
transition of spatial hysteresis loops. Depending on the relative width of the magnetic film L compared
to the wavelength of the external field λ, different transition regimes are observed. For small systems
(L < λ), the transition is associated with the standard stochastic resonance regime, while for large systems
(L > λ), the transition is driven by anomalous stochastic resonance. The origin of the latter is identified as due
to the emergence of an additional relevant length scale, namely, the roughness of the spin domain switching
interface. The distinction between different stochastic resonance regimes is discussed at length both qualitatively
by means of snapshot configurations and quantitatively via residence-length and order-parameter probability
distributions.
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I. INTRODUCTION

With the sustained progress of nanoscale deposition tech-
niques such as sputtering and molecular beam epitaxy, which
grant control over the deposition process at the atomic scale,
thin films are playing an ever increasing role in applied
science and technology [1–4]. Besides the use of thin films
in many applications of great technological importance such
as optical coatings, electronics, packaging, and magnetic
recording media, much effort has recently been focused on
their investigation under a variety of experimental conditions
(see, e.g., [5–9] and references therein).

Recently, several experimental investigations have charac-
terized the response of various nanoscale magnetic systems
under spatially varying magnetic fields. The physics of micro-
scopically inhomogeneous magnetic fields relates to important
fundamental problems in the fractional quantum Hall effect,
superconductivity, spintronics, and graphene physics (see [10]
and references therein). Buchholz et al. investigated quantum
dots in spatially periodic magnetic fields, where a rich spectral
behavior was observed for varying parameters (amplitude,
wavelength, and phase) of the periodic magnetic field [11].
Very recently, double spin resonance in a spatially periodic
magnetic field with zero average has been experimentally ob-
served as well [12]. Furthermore, Davidenko and Al-Kadhimi
studied the formation of magnetic gratings in epitaxial garnet
films under spatially periodic magnetic fields, which were
obtained by using spatially periodic fringing fields from a
magnetic tape [13].

Moreover, a number of theoretical efforts have been
devoted to studying the response of magnetic systems un-
der inhomogeneous and/or oscillating magnetic fields. The
interplay of characteristic time and length scales between the
geometrical and dynamical features of the magnetic system

(shape, size, thickness, mono- or multilayer configuration,
deposition rate, etc.) and the external magnetic fields leads
to a variety of complex phenomena. Some of these studies,
which focused on Ising-like spin systems, have investigated
field-driven dynamical phase transitions [14–17], dynamical
symmetry breaking of hysteresis loops [18,19], switching
and magnetization reversal [20–22], droplets, nucleation, and
metastable states [23–26], and stochastic resonance [27–29].

Within the broad context of these recent experimental and
theoretical investigations, the aim of this work is to address
the computational modeling of far-from-equilibrium thin-film
growth under spatially periodic magnetic fields by means of
extensive Monte Carlo simulations. The irreversible growth of
magnetic thin films is investigated by using the so-called mag-
netic Eden model (MEM) [30–32], an extension of the classical
Eden model [33] in which particles have a two-state spin as
an additional degree of freedom. The MEM growth process is
irreversible since newly deposited particles are not allowed to
flip and thermalize once they are added to the growing cluster.

Driven by the external magnetic field, we observe the
occurrence of stochastic resonance (SR) phenomena leading to
a first-order phase transition between a dynamically symmetric
phase and a dynamically asymmetric phase. This transition
can be associated with the phenomenon of spatial hysteresis,
which is analogous to the behavior of Ising-like spin systems
under (time-dependent) oscillating magnetic fields. However,
new features arise from the nature of the growth process
investigated here: The roughness of the interface between
neighboring magnetic domains has a characteristic scale in
competition with the wavelength of the external magnetic
field. Therefore, depending on the interplay of characteristic
length cales, two kinds of stochastic resonance regimes are
possible, which we further describe as standard SR (SSR) and
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anomalous SR (ASR). The characteristics of both SSR and
ASR regimes are extensively discussed.

The paper is laid out as follows. In Sec. II we introduce
the model and describe the Monte Carlo algorithm used to
simulate thin-film growth under spatially periodic magnetic
fields. In Sec. III we present and discuss our results. Finally,
Sec. IV contains a summary.

II. MODEL AND MONTE CARLO SIMULATION METHOD

In the Eden model [33], originally proposed as a stochastic
kinetic model for the growth of bacterial colonies, particles
are added at random to the perimeter of a growing cluster. The
Eden model is known to belong to the Kardar-Parisi-Zhang
(KPZ) universality class [34]; indeed, the most accurate
simulation results for the KPZ model [35] appear to agree well
with some of the formerly reported exponents for KPZ [36] and
the Eden model in (d + 1) dimensions for d = 1,2 [37]. The
MEM is an extension of the Eden model in which particles have
a magnetic moment coupled through Ising-like interactions. In
regular lattices, the MEM’s growth process leads to Eden-like
self-affine growing interfaces and fractal cluster structures
in the bulk and displays a rich variety of nonequilibrium
phenomena such as thermal order-disorder continuous phase
transitions, spontaneous magnetization reversals, and morpho-
logical, wetting, and corner-wetting transitions (see Ref. [38]
for a review).

In this work, the MEM is studied in (1 + 1)-dimensional
strip geometries by using a rectangular substrate of size
L × M , where M # L is the growth direction. The location
of each spin on the lattice is specified through its coordinates
(x,y) (1 ! x ! M,1 ! y ! L). The starting seed for the
growing cluster is a column of L parallel-oriented spins placed
at x = 1 and cluster growth takes place along the positive
longitudinal direction (i.e., x " 2). We adopt continuous
boundary conditions along the y direction, i.e., sites (x,y = 1)
are nearest neighbors to sites (x,y = L). Since the films are
effectively semi-infinite and the substrate length along the
growth direction plays no role, the only characteristic length
of the setup is the transverse linear size L.

In this work, we study the irreversible growth of thin films
under spatially periodic magnetic fields given by

H (x) = h0 sin(2πx/λ). (1)

We consider that fluctuations are controlled by a thermal bath
that maintains the temperature fixed at T . According to the
MEM’s growth rules [30], clusters are grown by selectively
adding two-state spins (Sxy = ±1) to perimeter sites, which are
defined as the nearest-neighbor (NN) empty sites of the already
occupied ones. Considering a ferromagnetic interaction of
strength J > 0 between NN spins, the energy E of a given
configuration of spins is given by

E = −J

2

∑

〈xy,x ′y ′〉NN

SxySx ′y ′ −
∑

xy

H (x)Sxy, (2)

where the first summation is taken over occupied pairs of
NN sites, while the second term accounts for the interaction
between the magnetic field and all deposited spins. The Boltz-
mann constant is set equal to unity throughout; temperature,
magnetic field, and energy are measured in units of J . The

probability for a perimeter site at (x,y) to be occupied by a
spin is proportional to the Boltzmann factor exp(−#E/T ),
where #E is the change of energy involved in the addition of
the spin. Notice that the adoption of a Boltzmann factor implies
that, near the growing interface, not-yet-deposited spins in the
spin gas reservoir are in equilibrium with the thermal bath
at temperature T ; upon attachment to the interface, however,
spins become quenched. Indeed, although Eq. (2) resembles
the Ising Hamiltonian, the MEM is a nonequilibrium model
in which, as new spins are continuously added, older spins
remain frozen and are not allowed to flip, detach, or diffuse.

At each step, all perimeter sites have to be considered and
the probabilities of adding a new (either up or down) spin to
each site must be evaluated. Using the Monte Carlo simulation
method, after all probabilities are computed and normalized,
the growth site and the orientation of the new spin are simul-
taneously determined by means of a pseudo-random-number.
The change of energy involved in the addition of a new spin
#E depends on the local configuration of neighboring spins;
however, since the sum of Boltzmann factors over all perimeter
sites is a global (nonconserved) quantity, the MEM’s growth
rules require updating the normalized deposition probabilities
at each time step and lead to very slow algorithms compared
with analogous equilibrium spin models. Clusters having up
to 109 spins have typically been grown for lattice sizes up to
L = 1024.

As in the case of the classical Eden model [33], the
magnetic Eden model leads to a compact bulk and a self-affine
growth interface [30]. The growth front may temporarily create
voids within the bulk, usually not far from the rough growth
interface. However, since the boundaries of these voids are also
perimeter sites, they ultimately become filled at some point
during the growth process. Hence, far behind the active growth
interface, the system is compact and frozen and the different
quantities of interest can thus be measured on defect-free
transverse columns. The growth of magnetic Eden aggregates
in (1 + 1)-strip geometries is characterized by an initial
transient length $tr ∼ L (measured along the growth direction,
i.e., the x axis) followed by a nonequilibrium stationary
state that is independent of the initial configuration [31].
We considered starting seeds formed by L up spins (i.e.,
S(x=1,y) = 1), but any choice for the seed leads to the same
stationary states for x # $tr. By disregarding the transient
region, all results reported in this paper are obtained under
stationary conditions. While keeping the field’s period fixed at
λ = 100 lattice units throughout, we explore extensively the
remaining parameter space by scanning meaningful ranges in
temperature, magnetic field amplitude, and system size. Notice
that, since the transitions are due to the competition between λ
and the other relevant length scales in the system, assuming a
fixed value for λ throughout does not entail a loss of generality.

III. RESULTS

A. Small systems: Standard stochastic resonance regime

In order to gain qualitative insight, let us first investigate
some typical modes of thin-film growth, as displayed by
the snapshots of Fig. 1 for different field amplitudes: (a)
h0 = 0.15, (b) h0 = 0.30, and (c) h0 = 0.40. These snapshots
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FIG. 1. Snapshots of characteristic growth regimes for thin films
with a small system size L = 64 growing at temperature T = 0.3
under a magnetic field of period λ = 100 and different amplitudes:
(a) h0 = 0.15, (b) h0 = 0.30, and (c) h0 = 0.40. The length of one
domain between consecutive magnetization switching events $sw is
indicated in (a).

correspond to thin films of size L = 64 and temperature
T = 0.30. This system size is small compared to the magnetic
field’s period (λ = 100). In the next section, we will discuss the
case of large systems with L > λ, in which new phenomena
emerge from the competition of characteristic length scales.
Since we are concerned with compact and frozen thin films in
the stationary regime, the seed and seed-dependent transient
region have been discarded. In Fig. 1, the active growth
interface (to which new spins are attached during the film’s
growth process) is not shown; the snapshots correspond to
fully grown regions spanning a length of 23 field periods.

In Fig. 1(a), the bulk grows ordered and the field favors
small fluctuations: The system grows with most spins aligned
in the same direction, while the field drives the formation
of small clusters of opposing magnetization. The small field
amplitude, however, is not capable of fully reversing the
bulk magnetization except for magnetization switching events,
which occur only sporadically over very long length scales
$sw # λ. The period-averaged magnetization

Q =
〈

1
λ

∫ x0+λ

x0

m(x)dx

〉

x0

(3)

is close to Q ∼ ±1. The brackets in Eq. (3), 〈· · ·〉x0 , denote
averages taken over periods λ within the region where the film
is fully grown, where x0 are multiples of λ and m(x) is the
normalized magnetization of the column of spins at position
x. In Fig. 1(b), the field is strong enough to drive the system
through frequent magnetization switching events, leading to
the formation of ordered transverse strips whose magnetization
alternates between the up and down directions. These bands
have uneven widths, but they all roughly correspond to odd
multiples of the half period λ/2. Averaging the magnetization
over one period as in Eq. (3), the longer, well-ordered
domains contribute to Q ∼ ±1, while the shorter, up-down
domain sequences contribute to Q ∼ 0. Indeed, the snapshot
in Fig. 1(b) marks the occurrence of a pseudo-phase-transition
driven by stochastic resonance with the external magnetic
field, a phenomenon that will be further characterized below.
Figure 1(c) shows a growth mode where the magnetic field is
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FIG. 2. Spatial hysteresis loops using data from the snapshots of
Fig. 1. The magnetic field amplitudes are (a) h0 = 0.15, (b) h0 = 0.30,
and (c) h0 = 0.40, as indicated.

strong enough to fully reverse the bulk magnetization within
each cycle, therefore forming ordered transverse strips whose
magnetization alternates between the up and down directions
at regular intervals. Since the width of these strips is roughly
equal to λ/2, the mean magnetization averaged over a cycle
is close to Q ∼ 0. It is worth noticing that the width of the
spin domain switching interface Wsw, i.e., the roughness of
the interface formed between consecutive up and down spin
domains, is much smaller than the field period λ, as expected
from the fact that the system size L is small compared to
λ. In the next section, when we discuss larger systems with
L > λ, we will find additional effects arising from the interplay
of Wsw with the other characteristic length scales of the
system.

Let us now explore the trajectories on the magnetization-
vs-field plane, i.e., m(x) as a function of H (x), using data from
the snapshots of Fig. 1. Interestingly, these trajectories can be
regarded as spatial hysteresis loops, i.e., a phenomenon akin to
the more usual (time) hysteresis loops observed in spin systems
under (time-dependent) oscillating fields. Indeed, when the
field amplitude is small [Fig. 2(a)], the loops (indicated by
horizontal arrows) remain pinned to the m ∼ ±1 ordered
regions and exhibit a negligible area. Over a length scale
$sw # λ, a passage from the m ∼ 1 region to the m ∼ −1
region is observed (down arrow). By increasing h0, a transition
to a mixed state is observed [Fig. 2(b)], where small-area
loops pinned to m ∼ ±1 (horizontal arrows) alternate with
large-area loops (vertical arrows) due to the periodic (but
out-of-phase) response of the magnetization to the applied
field. As h0 is further increased, the small-area loops vanish
and the large-area loops prevail, as shown in Fig. 2(c).

By exploiting the analogy with spin systems under oscil-
lating fields, such as the kinetic Ising model in sinusoidally
oscillating magnetic fields [14], we can gain some insight into
the novel phenomenon of spatial hysteresis. If the periodic field
(1) were replaced by a step function field that would switch
suddenly, at some position x∗, from h0 to −h0, the mean
column magnetization would drop from m ∼ 1 to m ∼ −1
over a characteristic magnetization decay length $D . Naturally,
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this characteristic length would depend on the field strength
and would become shorter as the field amplitude is increased.
The far-from-equilibrium response under spatially periodic
fields can therefore be viewed as a competition between
two length scales, namely, the characteristic decay length $D

versus the magnetic field’s period λ. For sufficiently large
field amplitudes, $D ) λ and thus the field is capable of
switching the film’s magnetization within the length of one
field half period. This leads to the formation of ordered
strips with $sw ∼ λ/2 [Fig. 1(c)], which corresponds to
the (symmetric) disordered dynamic phase with Q ∼ 0. For
sufficiently small field amplitudes, in contrast, $D # λ and
therefore the magnetization does not switch within one field
half period. Rather, the film keeps growing with all spins
mostly parallel aligned [Fig. 1(a)] and magnetization switching
events occur over much longer length scales $sw # λ, which
correspond to the (asymmetric) ordered dynamic phase with
Q ∼ ±1. From Fig. 2 we observe that this dynamic phase
transition is associated with a localization-delocalization
transition of spatial hysteresis loops, where symmetry breaking
is driven by the amplitude of the spatially periodic magnetic
field.

The natural order parameter to study dynamic phase
transitions is the period-averaged magnetization given by
Eq. (3). Due to finite-size effects, however, we will use instead
the absolute value of the order parameter |Q|, which prevents
spurious averaging to zero (since, even in the h0 → 0 limit,
the system is capable of switching from Q ∼ 1 to Q ∼ −1,
or vice versa, due to large thermal fluctuations at scales
comparable to the system size). Figure 3(a) shows |Q| as a
function of the field amplitude h0 for T = 0.30 and different
system sizes, as indicated. In agreement with the previous
discussion, the system undergoes a field-driven transition
from the asymmetric dynamic phase (|Q| ∼ 1) for small field
amplitudes to the symmetric dynamic phase (|Q| ∼ 0) for
large field amplitudes. Rigorously, this transition should be
regarded as a pseudo-phase-transition that affects the growth of
thin magnetic films of finite size. As shown by Fig. 3(a), larger
system sizes cause the plots to shift to smaller field amplitudes.
It should be remarked that the original MEM in (1 + 1)
dimensions is noncritical [i.e., the finite-size order-disorder
critical temperature Tc(L) tends to zero as L → ∞ [31]] and
therefore there is no bulk ordered phase. Further discussions
on finite-size effects will be presented below.

For equilibrium systems, the magnetic susceptibility is
related to order-parameter fluctuations by the fluctuation-
dissipation theorem. Although the validity of a fluctuation-
dissipation relation in the case of nonequilibrium systems
is not formally proven, earlier studies of nonequilibrium
spin models [15,24] have shown that assuming an analogous
definition for the susceptibility in terms of the moments of the
order-parameter probability distribution, namely,

χQ = L

T
(〈Q2〉 − 〈|Q|〉2), (4)

is useful to investigate the nature of phase transition phenom-
ena under far-from-equilibrium conditions.

Figure 3(b) shows plots of χQ as a function of the field
amplitude h0 for T = 0.30 and different system sizes, as
indicated. Similarly to the behavior of the order parameter
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FIG. 3. (Color online) Simulation results of thin film growth
under spatially periodic magnetic fields as a function of the field
amplitude h0 for T = 0.30, λ = 100, and different film sizes, as
indicated. (a) Absolute value of the period-averaged magnetization
|Q|. (b) Susceptibility χQ. (c) Fourth-order cumulant of the order-
parameter probability distribution U4. Film sizes are represented by
the same symbols in panels (a)–(c).

in Fig. 3(a), the peaks of the susceptibility appear sharper
and shifted to smaller field amplitudes as the system size is
increased.

The Binder cumulant, defined by

U4 = 1 − 〈Q4〉
3〈Q2〉2

, (5)

is a fourth-order cumulant dependent on the variance and the
kurtosis of the order-parameter probability distribution. Since,
for second-order phase transitions, the scaling prefactor of the
cumulant is independent of the sample size, plots of U4 versus
the control parameter lead to a common (size-independent)
intersection point that corresponds to the location of the
critical value of the order parameter in the thermodynamic
limit [39]. In contrast, for first-order phase transitions, a
characteristic signature of U4 is a sharp fall towards negative
values [40,41].

Figure 3(c) shows plots of U4 as a function of the field
amplitude h0 for T = 0.30 and different system sizes, as
indicated. These plots display the hallmark behavior for
first-order phase transitions, namely, a sharp drop towards
negative values at the transition point. Consistent with the
behavior observed above [Figs. 3(a) and 3(b)], the location
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FIG. 4. A log-log plot of the maxima of χQ as a function of
the system size L for different temperatures, as indicated. The solid
lines show the best fits to the data on the left- and right-hand linear
regimes, which are separated by a small crossover region. Within the
fitting error bars, all fitted lines are consistent with a slope equal to
unity.

of the transition is shifted towards smaller values of h0
as L is increased. We conclude, therefore, that finite-size
films growing irreversibly under spatially periodic magnetic
fields undergo a dynamic pseudo-phase-transition between an
(asymmetric) ordered dynamic phase (|Q| ∼ 1 for small h0)
and a (symmetric) disordered dynamic phase (|Q| ∼ 0 for
large h0), whose nature is discontinuous (first order).

Besides the minima of the cumulant at the transition points,
another characteristic signature of first-order phase transitions
is the linear scaling behavior of the maxima of χQ [i.e., the
height of the peaks shown in Fig. 3(b), which we denote by
χmax

Q ] as a function of the volume LD , where D is the system’s
effective Euclidean dimension. In contrast, second-order phase
transitions are typically characterized by nonlinear scaling
relations, from which the critical exponent ratio γ /ν can be
determined [42].

Figure 4 shows log-log plots of the maxima of χQ as
a function of the system size L for different temperatures,
as indicated. Two separate linear regimes are observed,
namely, the small-L region with slope equal to 1.00 ± 0.02
for L # 60–100 and the large-L region with slope equal to
0.99 ± 0.02 for L $ 100–150. Therefore, both regimes are
consistent with the linear behavior χmax

Q ∝ L, which is the
expected behavior for first-order pseudo-phase transitions in
one-dimensional systems. Intriguingly, however, these two
regimes are separated by a crossover region that takes place
roughly around L ∼ 100, i.e., at system sizes comparable to
the magnetic field’s period λ = 100. In the remainder of this
section, we investigate further the thin-film growth regime
for small systems, while Sec. III B will be dedicated to study
the growth regime for large systems. Finally, Sec. III C will
provide a qualitative explanation for the nature of the crossover
behavior.

The well-known phenomenon of stochastic resonance
occurs when a system’s characteristic scale is matched by
the characteristic scale of an external field [43]. In the case of
symmetric bistable systems, this transient regime is revealed
by a characteristic exponential decrease of the maxima of
the residence-time probability distributions. Moreover, the
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FIG. 5. (Color online) The log-linear residence-length probability
distributions at the dynamic phase transition for T = 0.30: (a) L = 64
and h0 = 0.30 and (b) L = 256 and h0 = 0.175. (a) The solid line
is an exponential fit to the distribution peaks given by P = Ae−xR/B ,
with A = 0.046 ± 0.001 and B = 8.7 ± 0.1. (b) The dashed line is
a power-law fit given by P = Cx−D

R with C = 2.3 ± 0.5 and D =
1.26 ± 0.03.

residence-time peaks appear at regular locations that corre-
spond to odd multiples of λ/2, thus indicating that resonance
with the external field is indeed the mechanism responsible for
driving the system across different dynamic states.

Figure 5 shows the log-linear residence-length probability
distribution at the dynamic phase transition for T = 0.30,
L = 64, and h0 = 0.30. Analogously to the definition of
resident time in bistable systems under time-dependent os-
cillating fields [16], residence length is here defined as the
length (measured along the longitudinal growth direction)
between two consecutive crossings of the column-averaged
magnetization profiles across m = 0. That is, if x0 is the
position of one magnetization switch [e.g., from m(x0 − 1) "
0 to m(x0 + 1) < 0] and x1 is the position for the next
magnetization switch [correspondingly, from m(x1 − 1) < 0
to m(x1 + 1) " 0], the residence length is computed as xR =
x1 − x0. By growing very long magnetic films (for which many
such magnetization switching events are observed), we obtain
residence-length probability distributions. Figure 5(a) shows
the behavior expected for a standard stochastic resonance
regime: The distribution peaks are located at odd multiples of
the half period λ/2 and their heights decrease exponentially,
as evidenced by the straight solid line in the log-linear
plot, which is a fit to P = Ae−xR/B with A = 0.046 ± 0.001
and B = 8.7 ± 0.1. Based on these findings, we will refer
to the region for small lattice sizes compared to the field
period as the standard stochastic resonance regime. This
corresponds to the linear regime observed on the left-hand side
of Fig. 4.

B. Large systems: Anomalous stochastic resonance regime

For magnetic film sizes larger than the field period, a
different growth regime appears. This is indeed apparent from
the resident-length probability distribution shown in Fig. 5(b),
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FIG. 6. (Color online) Snapshots of characteristic growth regimes for a large system size L = 256 growing at temperature T = 0.3 under
a magnetic field of period λ = 100 and different amplitudes: (a) h0 = 0.12, (b) h0 = 0.175, and (c) h0 = 0.30. The characteristic length scales
are indicated. See the text for further details.

where the distribution peaks appear shifted from the expected
locations at odd multiples of λ/2 and, moreover, the maxima
depart from the expected exponential relation. The best fit
to the local maxima is found by using a power-law relation
P = Cx−D

R , with C = 2.3 ± 0.5 and D = 1.26 ± 0.03, shown
by the dashed line in Fig. 5(b).

In order to gain further insight into this growth regime,
Fig. 6 shows snapshots for a film size larger than the field
period (namely, L = 256 and λ = 100), for T = 0.3 and
different field amplitudes: (a) h0 = 0.12, (b) h0 = 0.175, and
(c) h0 = 0.30. The regions marked by red boxes on the top
panels appear expanded in the bottom panels so as to zoom
into the regions where spin domain switching events take
place. Figure 6(a) shows that, for small field amplitudes,
the magnetization switching events occur over length scales
$sw # λ, which corresponds to the ordered dynamic phase
with |Q| ∼ 1, similarly to Fig. 1(a). However, by zooming
into the spin domain switching region (marked with a box
and expanded in the bottom panel), we observe that spin
domain switching takes place over several wavelengths of
the periodic magnetic field. Following the oscillations of the
magnetic field, the spin domain interface displays a wavy
pattern and has a width Wsw # λ. Figure 6(b) corresponds
to the phase transition, where the interplay of characteristic
length scales leads to a complex wavy pattern. In this case,
distinct transverse bands are observed; however, rather than
establishing well-separated domains, these transverse strips
appear joined with the neighboring domains due to the
competition of length scales at the transition, i.e., Wsw ∼ λ.
Only by increasing the field amplitude well beyond the
transition point, as shown in Fig. 6(c), is the magnetic field able
to enforce sharp spin domain switching events, thus restoring
the length scale relation Wsw < λ and, consequently, lead to the
dynamic disordered phase with |Q| ∼ 0, similarly to Fig. 1(c).
We characterize the growth regime for large film sizes (which
corresponds to the right-hand side region of Fig. 4) as the
anomalous stochastic resonance regime.

C. Discussion

The key to understanding the crossover from the SSR to
the ASR regime is to notice that, analogously to other kinds
of surface growth phenomena, thin films grow with a rough
interface, whose saturated width in the stationary regime scales
with the lattice size as w ∝ Lα [34,44]. For magnetic Eden

model thin films, w = a × L with a < 1 [45]. The snapshots
from Fig. 1 correspond to a lattice size (L = 64) smaller than
the field period (λ = 100). Therefore, the width of the domain
switching interface Wsw, i.e., the roughness of the interface
formed between consecutive up and down spin domains (which
is of the same order as the width of the growing interface) is
smaller than the field period λ. This is the main characteristic
of the transition driven by the SSR regime. In contrast, when
the width of the domain switching interface is comparable to
(or larger than) the field wavelength, as shown in Fig. 6, the
phase transition is driven by the ASR regime. Therefore, the
SSR-ASR crossover is due to the competition of characteristic
length scales, namely, the spin domain width interface Wsw

(which depends on L and h0) versus the field period λ (which
is fixed at λ = 100 lattice units throughout).
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FIG. 7. Probability distribution functions of the order parameter
Q at the transition point for different system sizes. (a) For a small
system (L = 64 and h0 = 0.30), the distribution shows three peaks at
Q = ±1 and Q = 0, characteristic of the SSR regime. (b) For a large
system (L = 256 and h0 = 0.175), the distribution shows only two
peaks at Q = ±1, while intermediate values have a roughly constant
nonzero probability of occurrence. This behavior corresponds to the
ASR regime.
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FIG. 8. (Color online) Magnetization profiles at the transition
point for different system sizes (solid red lines) and magnetic
field H normalized by its amplitude h0 (sinusoidal dashed lines).
(a) For a small system (L = 64 and h0 = 0.30), a full magnetization
switch can occur within a length of λ/2, 3λ/2, etc. This behavior is
characteristic of the SSR regime. (b) For a large system (L = 256 and
h0 = 0.175), the magnetization responds to the field’s oscillations at
every field cycle, but the excursions are only partial. This phenomenon
is due to the interplay of length scales between the domain interface
roughness Wsw and the field wavelength λ and gives rise to the ASR
regime.

Revisiting Fig. 4, we observe that the crossover from SSR
to ASR occurs for larger system sizes as the temperature is
decreased. This phenomenon can be qualitatively explained
from the fact that, by keeping the system size L fixed,
the dynamic pseudo-phase-transition takes place at larger
field amplitudes as the temperature is decreased (i.e., a
larger field amplitude is needed to drive the magnetization
reversal of an inherently more ordered bulk due to decreased
thermal fluctuations). However, since the spin domain width
interface becomes smaller for a larger field (because a stronger
field drives the magnetization switching more sharply), we
conclude that, as the temperature is decreased, the spin domain
width is also decreased (at fixed L). In contrast, at fixed
temperature, the spin domain width interface increases with
L. The SSR-ASR crossover occurs for Wsw ∼ λ; hence, as
the temperature is decreased, we expect the crossover to take
place at larger system sizes, which agrees with the results from
Fig. 4.

Let us now consider the probability distribution functions
of the order parameter P (Q) at the transition point. Figure 7(a)
shows the distribution for L = 64 and h0 = 0.30 [which
corresponds to the snapshot in Fig. 1(b)], where three peaks
are observed at Q = ±1 and Q = 0. This is indeed the
expected behavior of a standard stochastic resonance: The
system either stays at the dynamically ordered phase Q = ±1
or, by resonating with the field, switches magnetization, thus
contributing to the dynamically disordered phase Q = 0. The
anomalous nature of the ASR regime is shown in Fig. 7(b) for
L = 256 and h0 = 0.175 [which corresponds to the snapshot
in Fig. 6(b)]. In this case, due to the interplay of length scales
discussed above, the field is not able to drive the system
through a sequence of fully separated spin domains. Rather,

domains with a mix of up and down spins in a continuum
of different proportions are able to form with approximately
equal probability, as indicated by the flat bottom P (Q) - const
for −0.75 # Q # 0.75. Hence we find that field-resonant
stochasticity operates in two different modes. In the SSR
regime, the stochastic nature is reflected in the length needed
to achieve a full magnetization switch, which occurs at odd
multiples of half periods λ/2, 3λ/2, etc. This growth mode is
clearly shown by the magnetization profile of Fig. 8(a). In the
ASR regime, partial excursions are strongly correlated with
the magnetic field oscillations; however, the extent to which
the magnetization switches is stochastically driven by the
field resonance, as shown by Fig. 8(b). Thus the stochasticity
appears to operate along the (longitudinal) growth direction
in the SSR regime, whereas it appears to operate along the
transverse direction in the ASR regime.

IV. CONCLUSION

In this work, we studied the irreversible growth of thin films
under spatially periodic magnetic fields in (1 + 1)-dimensional
strip geometries. By analyzing snapshot configurations, we
found qualitative evidence for the occurrence of pseudo-phase-
transitions from a dynamically ordered phase to a dynamically
disordered phase, driven by the magnetic field amplitude. By
analogy with Ising-like models in time-dependent oscillating
fields, we characterized the phenomenon of spatial hysteresis
and showed evidence of the corresponding localization-
delocalization transition of spatial hysteresis loops. By using
the period-averaged magnetization as an order parameter, we
quantitatively described the dynamic transition. The study
of Binder cumulants and the susceptibility provided robust
evidence of this transition being of discontinuous (first-order)
nature.

Remarkably, two distinct stochastic resonance regimes are
responsible for the occurrence of dynamic pseudo-phase-
transitions, depending on the relative width of the thin film
compared to the magnetic field’s wavelength. For small
system sizes, the transition is associated with a standard
stochastic resonance regime. Instead, for large system sizes,
the emergence of an additional relevant length scale, namely,
the width of the spin domain switching interface, was found to
lead to a so-called anomalous stochastic resonance regime.
We analyzed these two stochastic resonance regimes both
qualitatively (by means of snapshot configurations) and quan-
titatively, via residence-length and order-parameter probability
distributions.

In the context of great experimental and theoretical interest
in magnetic systems growing under inhomogeneous and
oscillating magnetic fields, as well as a wide variety of
technological applications that benefit from these efforts, we
hope that this work will contribute to the progress of this
research field and stimulate further work.
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