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Irreversible growth of binary mixtures on small-world networks
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Binary mixtures growing on small-world networks under far-from-equilibrium conditions are studied by
means of extensive Monte Carlo simulations. For any positive value of the shortcut fraction of the network
(p>0), the system undergoes a continuous order-disorder phase transition, while it is noncritical in the regular
lattice limit (p=0). Using finite-size scaling relations, the phase diagram is obtained in the thermodynamic
limit and the critical exponents are evaluated. The small-world networks are thus shown to trigger criticality, a
phenomenon analogous to similar observations reported recently in the investigation of equilibrium systems.
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I. INTRODUCTION

Complex networks are known to play a key role in the
description of the structure and evolution of different meso-
scopic and macroscopic systems. Indeed, the interacting
parts of many natural and artificial systems can be inter-
preted as collections of linked nodes forming complex net-
works, whose structure and topology can be characterized in
terms of statistical quantities such as their degree and path-
length distributions, their connectivity, etc.

Empirical observations show that the mean distance be-
tween a pair of nodes within a connected real network is in
general surprisingly short (typically of a few degrees and
only logarithmically dependent on the system size), a phe-
nomenon known as the small-world effect. Moreover, the
neighborhood of each node is observed to be, on average,
highly interconnected [1].

The well-studied classical random graphs, which are net-
works built by linking nodes at random, display the small-
world effect but have much lower connectivities than usually
observed in real networks. In this context, the small-world
networks were proposed a few years ago [2,3] as a realiza-
tion of complex networks having short mean path lengths
(and hence showing the small-world effect) as well as large
connectivities. Starting from a regular lattice, a small-world
network is built by randomly adding or rewiring a fraction p
of the initial number of links. Even a small fraction of added
or rewired links provides the shortcuts needed to produce the
small-world effect, thus displaying a global behavior close to
that of a random graph, while preserving locally the ordered,
highly connected structure of a regular lattice. Indeed, it has
been shown that this small-world regime is reached for any
given disorder probability p >0, provided only that the sys-
tem size N is large enough (i.e., N>N,, where the critical
system size is N, 1/p) [4,5].

As a further step, recent works investigated the behavior
of many standard models of statistical mechanics defined on
small-world networks (see, e.g., [5-10]), as well as on other
classes of complex networks [1]. In particular, this was done
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for several equilibrium, Ising-type spin models. Besides their
inherent theoretical interest, spin models defined on small-
world networks can describe structural properties of polymer
chains [11-13] and have also been found useful in the study
of social phenomena. For instance, spin states may denote
different opinions or preferences, where the coupling con-
stant describes the convincing power between interacting in-
dividuals, which is in competition with the “free will” given
by the thermal noise [14]. Moreover, a magnetic field can be
used to add a bias that could be interpreted as “prejudice” or
“stubbornness” [15].

Generally speaking, it was found that the structure and
topology of the underlying complex networks affect dramati-
cally the critical behavior of the models defined on them. For
instance, it was found that the Ising model defined on a one
dimensional (1D) small-world network presents a second-
order phase transition at a finite critical temperature 7, for
any value of the rewiring probability p >0 [5,6]. Considering
directed links, even the nature of the phase transition was
found to change, switching from second to first order [16].
The ferromagnetic transition for the Ising model on small-
world networks has also been studied numerically by rewir-
ing 2D and 3D regular lattices [17].

Much less attention, however, has been devoted so far to
the investigation of nonequilibrium transitions on complex
networks. Some simple nonequilibrium models closely re-
lated to percolation were initially studied [18-20], while
more recently a model for social interaction was investigated
[21], in which the competition between dominance and spa-
tial coexistence of different states in the nonequilibrium dy-
namics of Potts-like models was examined. Within the con-
text of these recent developments, the aim of this work is to
investigate the irreversible growth of binary mixtures on
small-world networks.

The growth of a binary mixture (or, adopting an equiva-
lent magnetic language, a two-state magnetic system of up
and down spins) can be studied by means of the so-called
magnetic Eden model (MEM) [22,23], a natural generaliza-
tion of the classical Eden model [24] in which the particles
have an additional degree of freedom, the spin. In regular
lattices, the MEM’s growth process leads to an Eden-like
self-affine growing interface and a fractal cluster structure in
the bulk, and displays a rich variety of nonequilibrium phe-
nomena, such as thermal order-disorder continuous phase
transitions and spontaneous magnetization reversals, as well
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as morphological, wetting, and corner wetting transitions.
While the Eden model has extensively been applied to many
different problems (namely, soot formation [25], colloids
[25], percolation [26], growth of cell colonies [27], crystal
growth [28,29], etc.), the MEM describes the aggregation of
particles with a magnetic moment and can provide useful
insight into kinetic phenomena of great experimental and
theoretical interest, such as the growth of metallic multilay-
ers [30] and thin films interacting with a substrate [31], fluid
adsorption on wedges [32], filling of templates imprinted
with nanometer- and micrometer-sized features [33,34], etc.
Moreover, interpreting the spin of the particles in a more
general way, it can represent different atomic species in a
binary alloy, impurities or defects in a growing crystal, the
states of bacteria cells like Salmonella [35], the knowledge
level of students in a classroom [36], etc.

The MEM growing on a small-world network could be
considered, for instance, as representing the opinion spread-
ing within a social group. According to the growth rules of
the MEM, which are given in the next section, the opinion or
decision of an individual would be affected by those of their
acquaintances, but opinion changes (analogous to spin flips
in an Ising model) would not occur. However, as mentioned
above, other interpretations of the model could also be pos-
sible in contexts as different as materials science, sociology,
and biology.

This paper is organized as follows: in Sec. II, details on
the model definition and the simulation method are given;
Sec. III is devoted to the presentation and discussion of the
results, while the conclusions are finally stated in Sec. I'V.

II. THE MODEL AND THE SIMULATION METHOD

In this work, we consider the one-dimensional, nearest-
neighbor, adding-type small-world network model [37,38].
Starting with a ring of N sites and N bonds, a network real-
ization is built by adding new links connecting pairs of ran-
domly chosen sites. For each bond in the original lattice, a
shortcut is added with probability p. During this process,
multiple connections between any pair of sites are avoided,
as well as connections of a site to itself. Since the original
lattice bonds are not rewired, the resulting network remains
always connected in a single component. On average, pN
shortcuts are added and the mean coordination number is
(z)=2(1+p). Note that p can also be regarded as the mean
shortcut fraction relative to the number of fixed lattice bonds.

Once the network is created, a randomly chosen up or
down spin is deposited on a random site. Then, the growth
takes place by adding, one by one, further spins to the im-
mediate neighborhood (the perimeter) of the growing cluster,
taking into account the corresponding interaction energies.
By analogy to the Ising model, the energy E of a configura-
tion of spins is given by

J
E=->25.5,, (1)
24

where S;==1 indicates the orientation of the spin for each
occupied site (labeled by the subindex i), J>0 is the ferro-
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magnetic coupling constant between nearest-neighbor (NN)
spins, and (ij) indicates that the summation is taken over all
pairs of occupied NN sites. As with other spin systems de-
fined on complex networks, the magnetic interaction be-
tween any pair of spins is only present when a network bond
connects their sites.

Setting the Boltzmann constant equal to unity (kz=1) and
measuring the absolute temperature 7 in units of J, the prob-
ability for a new spin to be added to the (already grown)
cluster is defined as proportional to the Boltzmann factor
exp(—AE/T), where AE is the total energy change involved.
At each step, all perimeter sites have to be considered and
the probabilities of adding a new (either up or down) spin to
each site must be evaluated. Using the Monte Carlo simula-
tion method, all growth probabilities are first computed and
normalized, and then the growing site and the orientation of
the new spin are both determined by means of a pseudo
random number. Although the configuration energy of a
MEM cluster, given by Eq. (1), resembles the Ising Hamil-
tonian, it should be noticed that the MEM is a nonequilib-
rium model in which new spins are continuously added,
while older spins remain frozen and are not allowed to flip.
The growth process naturally stops after the deposition of N
particles, when the network becomes completely filled.

For any given set of defining parameters (i.e., the network
size N, the shortcut-adding probability p, and the tempera-
ture T), ensemble averages were calculated over 10* different
(randomly generated) networks and considering typically 50
different (randomly chosen) seeds for each network configu-
ration. Since all normalized growth probabilities have to be
recalculated at each deposition step, the resulting update al-
gorithm is rather slow. Involving a considerable computa-
tional effort, this work presents extensive Monte Carlo simu-
lations that cover the whole shortcut-adding probability
range 0=<p =1 for different network sizes up to N=10%

III. RESULTS AND DISCUSSION

The natural order parameter of a magnetic system is the
total magnetization per site—i.e.,

M=1%Es,-, (2)

which, in the context of this work, is to be measured on the
completely filled network. However, since MEM clusters are
grown from randomly chosen seeds, the ensemble average of
the total magnetization is (M) = 0. Here, we will instead con-
sider the absolute value of the total magnetization, |M|, as the
order parameter, which is also appropriate to avoid spurious
effects arising from finite-size spontaneous magnetization re-
versals [39,40].

Figure 1 shows plots of (|M|) as a function of T for dif-
ferent values of p and a fixed network size N=100. The
effect of increasing p at a fixed temperature is that of increas-
ing the net magnetization (and, hence, the order) of the sys-
tem. Indeed, larger shortcut fractions favor long-range order-
ing connections between distant clusters across the network.
Considering instead a fixed value of p, we see that, at low
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FIG. 1. Thermal dependence of the order parameter for a fixed
network size (N=100) and different values of the shortcut-adding
probability p, as indicated.

temperatures, the system grows ordered and the (absolute)
magnetization is close to unity, while at higher temperatures
the disorder sets on and the magnetization becomes reduced
significantly. However, fluctuations due to the finite network
size prevent the magnetization from becoming strictly zero
above the critical temperature, and the transition between the
low-temperature ordered phase and the high-temperature dis-
ordered one becomes smoothed and rounded.

Strictly speaking, Fig. 1 is just showing evidence of
pseudophase transitions, which might be precursors of true
phase transitions taking place in the (N — o) thermodynamic
limit. In the following, we will proceed to characterize in
more detail this pseudocritical state by measuring other ob-
servables on finite-size systems. Further on, we will use stan-
dard finite-size scaling procedures to establish the phase dia-
gram T, vs p corresponding to the true phase transition in the
thermodynamic limit, as well as to calculate critical expo-
nents that describe the behavior of the system at criticality.

Let us now consider the magnetic susceptibility y, given
by

X= (%)~ M1y, )

For equilibrium systems, the susceptibility is related to order
parameter fluctuations by the fluctuation-dissipation theo-
rem. Although the validity of a fluctuation-dissipation rela-
tion in the case of a nonequilibrium system is less evident,
we will assume Eq. (3) to hold also for the MEM. Indeed,
this definition of y proves very useful for exploring the criti-
cal behavior of this system, as shown in earlier studies of the
MEM in regular lattices [23], as well as in other nonequilib-
rium spin models [41,42].

Figure 2 shows plots of y vs T for different values of p
and a fixed network size N=100. As with the thermal depen-
dence of the order parameter shown in Fig. 1, the order-
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FIG. 2. Susceptibility as a function of the temperature for dif-
ferent values of the shortcut-adding probability p and the fixed net-
work size N=100.

disorder transitions signaled by the peaks of the susceptibil-
ity become rounded and shifted. For a given probability p
and system size N, we will define the effective finite-size
“critical” temperature T%/(N;p) as the temperature corre-
sponding to the peak of the susceptibility. Although the tran-
sition temperature of finite systems is not uniquely and pre-
cisely defined, the susceptibility peaks become sharper as
one considers larger systems, and the effective finite-size
“critical” temperatures tend to the true critical temperature in
the (infinite-size) thermodynamic limit [23,39,40].

In the same vein, the heat capacity per site can be related
to energy fluctuations as

6= o3 () ~ (). 4)

Figure 3 shows plots of ¢, vs T corresponding to the same
parameter values used before. Compared to the susceptibil-
ity, the heat capacity exhibits flatter shapes and broader
peaks.

Further insight can be gained by examining the normal-
ized probability distribution of the magnetization, Py(M).
Fixing the network size (N=1000), the behavior of Py(M)
for different temperatures is shown in Fig. 4 for (a) the regu-
lar lattice and (b) the small-world network with shortcut-
adding probability p=0.5. For high temperatures, in both
cases the probability distributions are Gaussian shaped and
centered at M =0, as expected for thermally disordered sys-
tems. However, their behavior is quite different at interme-
diate and low temperatures.

For p=0 [see Fig. 4(a)], the curvature of the distribution
is convex and exhibits a local maximum always situated at
M =0, while other maxima develop at M==1. At very low
temperatures, the curved shape flattens and the maxima at
M=+1 dominate the distribution. Irrespective of the tem-
perature, neither absolute nor local maxima arise at any in-
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FIG. 3. Heat capacity per site as a function of the temperature
for a fixed network size (N=100) and different values of the
shortcut-adding probability p, as indicated.

termediate values of the magnetization—i.e., different from
M =0 (the fully disordered state) and M=+1 (the completely
ordered states). In fact, this noncritical behavior is in agree-
ment with previous results for the MEM in the lattice: a
cluster growing in a linear regular lattice from a single seed
shows only a pseudophase transition with an effective “criti-
cal” temperature Tf.ff (N) that vanishes in the (N— o) ther-
modynamic limit [22]. An analogous behavior was observed
in the MEM grown in a stripped (1+ 1)-dimensional rectan-
gular geometry using linear seeds [23].

In contrast, in the small-world network [see Fig. 4(b)] one
observes the onset of two maxima located at M=+M, (0
<M,,<1), which become sharper and approach M==+1 as
T is gradually decreased. The smooth shift of the distribution
maxima across 7=T,, from M=0 to the low-temperature
nonzero spontaneous magnetization M=xM,,, is the signa-
ture of true thermally driven continuous phase transitions
[23,40]. Hence, critical behavior in the irreversible growth of
MEM clusters arises from the presence of shortcuts in the
small-world network. This result is a nonequilibrium realiza-
tion of analogous phenomena observed in related equilibrium
systems, such as, e.g., the Ising model in small-world net-
works generated from rewiring 1D lattices [5,6]. Notice,
however, that this work focuses on nonequilibrium processes
that cannot be derived from the study of equilibrium sys-
tems. Hence, the phenomena observed here provide further
and independent evidence on the effects of long-range inter-
actions on dynamical systems which are defined on small-
world networks.

In order to explore further this phenomenon, we will ex-
trapolate the finite-size “critical” temperatures to the thermo-
dynamic limit and build the corresponding phase diagram, in
which the critical temperature is given as a function of the
shortcut-adding probability of the network. Moreover, this
procedure will also allow to determine the critical exponents
of the system.
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FIG. 4. Normalized probability distributions of the magnetiza-
tion for a fixed lattice size (N=1000) and different temperatures, as
indicated. (a) The (p=0) regular lattice, which exhibits local or
absolute maxima at M=0 (the fully disordered state) and M==+1
(the completely ordered states). The sharp peaks at M==+1 for T
=0.3 have been truncated. (b) The small-world network with
shortcut-adding probability p=0.5. The gradual onset of maxima at
M=xM,, (0<My,<1) across the transition, which become
sharper and approach M==+1 as T is decreased, is the hallmark of a
true thermally driven continuous phase transition. See more details
in the text.

According to the finite-size scaling theory, developed for
the treatment of finite-size effects at criticality and under
equilibrium conditions [43,44], the difference between the
true p-dependent critical temperature T,(p) and the effective
pseudocritical one T%/(N;p) is given by

|T.(p) - T (N;p)| o N7, (5)

where v is the exponent that characterizes the divergence of
the correlation length at criticality.

The symbols in Fig. 5 show the effective transition tem-
peratures calculated for different network sizes in the range
102=N=10* and different shortcut fractions, as indicated.
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FIG. 5. Effective transition temperatures 7(N;p) for 10°=N
=10* and different values of p, as indicated (symbols). Fits to the
data using the finite-size scaling relation, Eq. (5), are also shown
(solid lines). See text for more details.

Recall that, as commented above, the size-dependent, pseud-
ocritical temperatures T%/(N;p) were determined for differ-
ent system sizes and shortcut fractions from the maxima of
the susceptibility (see Fig. 2). By means of least-squares fits
of the finite-size scaling relation, Eq. (5), to these data one
can determine both the true critical temperature of the sys-
tem, 7,.(p), as well as the critical exponent v. The nonlinear
least-squares fitting procedure was implemented using the
Levenberg-Marquardt minimization method [45].

The solid lines in Fig. 5 show least-squares fits to the
data. Indeed, the finite-size scaling theory proves useful in
describing the behavior of this nonequilibrium system near
the critical region, since the scaling relation given by Eq. (5)
provides an excellent fit to all the data.

Figure 6 shows the phase diagram T.(p) vs p, correspond-
ing to the critical behavior of the system in the thermody-
namic limit. The error bars reflect the statistical errors, which
were determined from the fitting procedure. As anticipated,
for p>0 the system undergoes critical order-disorder phase
transitions at finite critical temperatures: the small-world net-
work geometry triggers criticality. Naturally, the global or-
dering imposed by long-range shortcuts is weaker the lower
the shortcut fraction, and hence T,(p) decreases monotoni-
cally with p. The critical temperature vanishes for p=0,
which is the expected regular lattice limit behavior.

As commented above, the same fits of Eq. (5) to the nu-
merical data determine also the critical exponent v. The ob-
tained (p-independent) value is v=3.6+0.4, where the error
bar reflects the statistical error resulting from the fitting pro-
cedure. As in the case of equilibrium spin systems defined on
small-world networks (see, e.g., [9,17]), the universality
class of this nonequilibrium system is not observed to de-
pend on the shortcut density, provided that p>0.

An additional characterization of the critical behavior of
this system can be obtained by calculating the critical expo-
nent vy, which describes the divergence of the susceptibility
at the critical point. Using again the finite-size scaling theory
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FIG. 6. Phase diagram T.(p) vs p corresponding to the thermo-
dynamic limit, obtained using a finite-size scaling relation, Eq. (5).
The MEM growing on small-world networks with any value of p
>0 undergoes thermally driven continuous phase transitions. In the
regular lattice limit p=0, the system is noncritical. The dashed line
is a guide to the eye.

[43,44], the exponent ratio y/ v can be related to the peak of
the susceptibility measured in finite samples of size N by

Xomazx N (6)

The symbols in Fig. 7 correspond to the maxima of y plotted
against the network size for different values of p, as indi-
cated, while the solid lines are fits to the data using this
scaling relation, Eq. (6). It turns out that y/v=0.92+0.04,
where the error bar reflects the statistical error from the fit.

3

10

FIG. 7. Plots showing the maxima of y for different network
sizes in the range 10>°=N=10* and different shortcut fractions
(symbols). Also the corresponding finite-size scaling fits, given by
Eq. (6), are shown for comparison (solid lines).
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Using this ratio and the value already obtained for v, we
determine y=3.3+0.4.

IV. CONCLUSIONS

Binary mixtures growing irreversibly on small-world net-
works are studied numerically by means of extensive Monte
Carlo simulations performed on the magnetic Eden model.
First, evidence for the occurrence of order-disorder
pseudophase transitions is provided by the order parameter
and the response functions of finite samples. Then, studying
the order parameter distribution functions, a clearly different
behavior between the noncritical regular lattice (p=0) and
the small-world network (p>0) is observed. Indeed, the lat-
ter shows the behavior expected for systems undergoing ther-
mally driven continuous phase transitions. Hence, it is con-
cluded that a small fraction of shortcuts is sufficient to
trigger criticality.

In order to obtain additional evidence of this phenom-
enon, standard finite-size scaling relations are used to deter-
mine the phase diagram 7, vs p, in which the critical tem-
perature is shown as a function of the shortcut-adding
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probability of the network. As expected, for p >0 the system
undergoes order-disorder continuous phase transitions at fi-
nite critical temperatures. Since the long-range ordering is
weaker the lower the shortcut fraction, T, decreases mono-
tonically with p and vanishes for p=0. Moreover, the behav-
ior of the system at criticality is further characterized by the
calculation of the critical exponents v=3.6+0.4 and vy
=3.3+04.

These results, obtained in the framework of nonequilib-
rium growth systems, are a novel realization of analogous
phenomena, which have recently been reported in the inves-
tigation of related equilibrium systems. Indeed, they provide
further and complementary evidence on the ordering and
criticality-inducing effects of long-range interactions on dy-
namical systems defined on small-world networks. The
present work will thus hopefully stimulate and contribute to
further developments in the fields of complex networks and
nonequilibrium statistical physics.
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