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Abstract. We investigate the irreversible growth of (2 + 1)-dimensional
magnetic thin films under the influence of a transverse temperature gradient,
which is maintained by thermal baths across a direction perpendicular to the
direction of growth. Therefore, different longitudinal layers grow at different
temperatures between T1 and T2, where T1 < T hom

c < T2 and T hom
c = 0.69(1)

is the critical temperature of films grown in homogeneous thermal baths. We find
a far-from-equilibrium continuous order–disorder phase transition driven by the
thermal bath gradient. We characterize this gradient-induced critical behavior
by means of standard finite-size scaling procedures, which lead to the critical
temperature Tc = 0.84(2) and a new universality class consistent with the set
of critical exponents ν = 3/2, γ = 5/2, and β = 1/4. In order to gain further
insight into the effects of the temperature gradient, we also develop a bond model
that captures the magnetic film’s growth dynamics. Our findings show that the
interplay of geometry and thermal bath asymmetries leads to growth bond flux
asymmetries and the onset of transverse ordering effects that explain qualitatively
the shift observed in the critical temperature. The relevance of these mechanisms
is further confirmed by a finite-size scaling analysis of the interface width, which
shows that the growing sites of the system define a self-affine interface.

Keywords: classical Monte Carlo simulations, finite-size scaling, irreversible
aggregation phenomena (theory), thin film deposition (theory)
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1. Introduction

The importance of thin film technology has been widely recognized in the realms of
experimental and applied science, from the manufacture of electronics (layers of insulators,
semiconductors, and conductors from integrated circuits) to optics (reflective and anti-
reflective coatings, self-cleaning glasses, etc) and packaging (e.g. aluminum-coated PET
films). Indeed, the increasing role of thin films in basic and applied research relies on
the development and refinement of nanoscale deposition techniques such as sputtering
and molecular beam epitaxy, which allow a single layer of atoms to be deposited at a
time [1]–[4].

Since the growth temperature is one of the critical parameters in the formation of
ordered thin films, several experiments have focused on the influence of a temperature
gradient during film growth. In an early experiment by Tanaka et al [5], magnetic Tb–Fe
films were grown between two substrates with a temperature gradient, reporting the
observation of perpendicular magnetic anisotropies and other gradient-driven structural
features. More recently, Schwickert et al [6] introduced the ‘temperature wedge method’,
where a calibrated temperature gradient of several hundred kelvin was established
across the substrate during co-deposition of Fe and Pt on MgO(001) and MgO(110)
substrates. These experiments generated the L10 ordered phase of FePt, which is currently
the leading candidate material for ultrahigh density heat-assisted magnetic recording
(HAMR) and bit-patterned magnetic recording (BPMR) media ([7, 8] and references
therein). Other experiments by Yongxiong et al [9] have investigated the evolution of
Fe oxide nanostructures on GaAs(100) by using a multi-technique experimental setup
that included transmission and reflection high-energy electron diffraction and scanning
electron microscopy. In these studies, nanoscale epitaxial Fe films were grown, oxidized,
and annealed using a gradient temperature method, which led to nanostripes with
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uniaxial magnetic anisotropy. As a result of the experimental advances in this field, many
technological applications have been envisioned as well. For instance, magneto-optical
recording studies of signal reproduction [10] have suggested that recording media having
multiple magnetic layers in a transverse temperature gradient may suppress magnetic noise
from tracks adjacent to the target track during information storage and reproduction [11].

From a theoretical perspective, gradients have been studied extensively in the context
of diffusion processes and later extended to thermal conductivity and heat conduction
problems. The so-called gradient percolation method was originally introduced to study
percolation transition models where the density is the control parameter [12] and later
applied to a variety of problems, such as fractal diffusion fronts [13]–[15], overlapping disks
in a concentration gradient [16], bond percolation for the kagomé lattice [17], invasion
percolation under gravity [18], porous media [19], as well as in the study of vegetation
distribution [20]. Very recently, the gradient method has been extended as a powerful
tool to study first- and second-order irreversible phase transitions in far-from-equilibrium
systems such as the Ziff–Gulari–Barshad model and forest-fire cellular automata [21, 22].
In magnetic systems, damage-spreading processes in a temperature gradient [23] and
studies of several one-dimensional models [24]–[27] have been followed by the investigation
of the kinetic Ising model in two dimensions under a variety of dynamics [28]–[32].

Within the broad context of these recent experimental and theoretical investigations,
the aim of this paper is to study the irreversible growth of magnetic thin films in a
temperature gradient and to provide a full characterization of the gradient-induced critical
phase transition. The magnetic thin film growth process under far-from-equilibrium
conditions is investigated by using the so-called magnetic Eden model (MEM) [33]–[35],
an extension of the classical Eden model [36], in which particles have a two-state spin
as an additional degree of freedom. Earlier studies have shown that, growing in (d + 1)-
dimensional strip geometries in homogeneous thermal baths, MEM films are noncritical
for d = 1 [34]. In contrast, for d = 2 they undergo an order–disorder phase transition
that takes place at T hom

c = 0.69(1) in the thermodynamic limit. The critical exponents
are νhom = 1.04(16), γhom = 2.10(36), and βhom = 0.16(5), which intriguingly agree within
error bars with the exact exponents for the kinetic Ising model [34]. Since the MEM growth
process is irreversible and newly deposited particles are not allowed to flip and thermalize
once they are added to the growing cluster, the observed correspondence between the
MEM and the equilibrium Ising model remains puzzling.

In this work, we focus on the critical case (i.e. d = 2) and show that, when applying
a transverse temperature gradient maintained by thermal baths between temperatures T1

and T2, where T1 < T hom
c < T2, the system undergoes a continuous phase transition at

a higher critical temperature (Tc > T hom
c ) and with different critical exponents. We also

develop a growth bond model and show the existence of bond flux asymmetries caused by
the interplay of geometry and thermal bath asymmetries, which shed some light on the
growth dynamics and explain qualitatively the shift observed in the critical temperature.
The growth bond model analysis is further supported by the fact that the growing interface
is self-affine, thus ensuring that the growing sites are correlated at all size scales.

The rest of the paper is laid out as follows. In section 2, we introduce the model and
describe the Monte Carlo algorithm used to simulate MEM thin films in a temperature
gradient. In section 3, we present our results and a discussion. Finally, section 4 consists
of concluding remarks.
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2. The model and the Monte Carlo simulation method

The MEM in (2 + 1)-dimensions is studied in the square lattice by using a rectangular
geometry Lx × Ly × Lz, where Lz � Lx = Ly ≡ L is the growth direction. The location
of each spin on the lattice is specified through its coordinates (x, y, z) (1 ≤ x, y ≤ L,
1 ≤ z ≤ Lz). The starting seed for the growing cluster is a plane of L×L parallel-oriented
spins placed at z = 1 and cluster growth takes place along the positive longitudinal
direction (i.e., z ≥ 2). Across one of the transverse directions (the y-axis), a temperature
gradient is applied by thermal baths at fixed temperatures linearly varying between T1

and T2. Therefore, in our setup each layer at fixed y is subjected to a constant temperature
T (y) = T1+(T2−T1)(y−1)/(L−1) maintained by a thermal bath. We adopt open boundary
conditions along the y-direction, while continuous boundary conditions are considered
along the x-direction.

Clusters are grown by selectively adding two-state spins (Sxyz = ±1) to perimeter
sites, which are defined as the nearest-neighbor (NN) empty sites of the already occupied
ones. Let us recall that the substrate is a 3D cubic lattice and therefore each lattice site
in the bulk has 6 NN sites. Considering a ferromagnetic interaction of strength J > 0
between NN spins, the energy E of a given configuration of spins is given by

E = −J
2

∑
〈xyz,x′y′z′〉

SxyzSx′y′z′ , (1)

where the summation 〈xyz, x′y′z′〉 is taken over occupied NN sites. The Boltzmann
constant is set equal to unity throughout, and both temperature and energy are measured
in units of J . The probability for a perimeter site at (x, y, z) to be occupied by a spin is
proportional to the Boltzmann factor exp(−∆E/T ), where ∆E is the change of energy
involved in the addition of the spin and T is the temperature at the perimeter site.

At each step, all perimeter sites have to be considered and the probabilities of adding
a new (either up or down) spin to each site must be evaluated. Using the Monte Carlo
simulation method, after all probabilities are computed and normalized, the growth site
and the orientation of the new spin are both simultaneously determined by means of
a pseudo-random number. Notice that the MEM’s growth rules require updating the
probabilities at each time step and lead to very slow algorithms compared with analogous
equilibrium spin models. Since the observables of interest (e.g. the mean transverse
magnetization along the x-direction and its higher moments) require the growth of samples
with a large number of transverse planes of size L×L, clusters having up to 109 spins have
typically been grown for lattice sizes in the range 12 ≤ L ≤ 96. Also, let us point out again
that, although equation (1) resembles the Ising Hamiltonian, the MEM is a nonequilibrium
model in which new spins are continuously added, while older spins remain frozen and are
not allowed to flip, detach, or diffuse.

As in the case of the classical Eden model, the magnetic Eden model leads to a compact
bulk and a self-affine growth interface [33] (see section 3.4 for a detailed finite-size scaling
analysis of the interface width). The growth front may temporarily create voids within
the bulk, usually not far from the rough growth interface. However, since the boundaries
of these voids are also perimeter sites, they ultimately become filled at some point during
the growth process. Hence, far behind the active growth interface, the system is compact
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Figure 1. Snapshot showing a longitudinal slice for a fixed value of the transverse
coordinate x. A temperature gradient between T1 = 0.5 (bottom) and T2 = 1.5
(top) is maintained along the transverse axis y. The system grows along the
longitudinal z > 0 direction in a semi-infinite (2 + 1)-dimensional strip substrate.
Red (black) sites represent up (down) spins, while empty sites are shown in white.

and frozen, and the different quantities of interest can thus be measured on defect-free
transverse planes.

Notice that the growth of magnetic Eden aggregates in (2 + 1)-strip geometries is
characterized by an initial transient length `T ∼ L2 (measured along the growth direction,
i.e. the z-axis) followed by a nonequilibrium stationary state that is independent of
the initial configuration [34]. We considered starting seeds formed by L × L up spins
(i.e. Sxy1 = 1) but any choice for the seed leads to the same stationary states for z � `T.
By disregarding the transient region, all results reported in this paper are obtained under
stationary conditions. Also notice that, since the films are effectively semi-infinite and the
substrate length along the growth direction plays no role, the only characteristic length
is the transverse linear size L.

3. Results and discussion

3.1. Gradient-driven continuous pseudo-phase transitions in finite-size films

Let us begin by considering a fixed gradient between temperatures T1 = 0.5 and T2 = 1.5.
The effect of changing this gradient will be discussed later. Figure 1 shows the snapshot of a
longitudinal slice for a fixed value of the transverse coordinate x. The temperature gradient
is applied along the transverse y-direction, while the system grows from left to right along
the longitudinal z > 0 direction. Notice that the bulk grows compact, because although
voids and holes in the bulk may eventually occur, they ultimately become filled at some
point during the growth process. The bottom layers grow in contact with thermal baths
at cold temperatures, which favor the formation of well-ordered spin domains. In contrast,
the top layers grow in contact with hot thermal baths that promote bulk disorder. As will
be shown below, the interplay of model growth dynamics, geometry, and thermal bath
asymmetries lead to the onset of gradient-driven order–disorder critical phase transitions
that can be quantitatively characterized.

In order to take into account the asymmetries introduced by the temperature gradient,
we can quantify the degree of order in the system by considering the magnetization of
transverse columns at constant temperature (i.e. along the x-axis):

m(y) =
1

L

∑
x

Sxyz. (2)
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Figure 2. Symmetrized magnetization probability distributions for a system of
linear size L = 64 and different layer temperatures between T1 = 0.5 and T2 = 1.5.
The sharp peaks near m ' ±1 for T = 0.80 have been truncated.

Figure 2 shows the probability distributions of m for a system of linear size L = 64
growing in a temperature gradient between T1 = 0.5 and T2 = 1.5. Notice that different
plots correspond to different layers and, therefore, to different temperatures within
the gradient’s range, as indicated. As expected for a continuous order–disorder phase
transition, the low-temperature distributions are bimodal and peaked at the spontaneous
magnetization m = ±msp(0 < msp < 1). As the temperature is increased, the peaks
approach each other and merge smoothly, ultimately leading to a Gaussian distribution
peaked at m = 0 for high temperatures, which is characteristic of the disordered phase.
Indeed, the smooth shift of the distribution maxima across T ' Tc(L), from the low-
temperature nonzero spontaneous magnetization m = ±msp to the high-temperature
Gaussian centered at m = 0, is the signature of true thermally driven continuous phase
transitions [37].

Notice that the distributions in figure 2 are symmetrical, since there exists a finite
probability for fluctuations to grow and switch the magnetization from m ' +msp

to m ' −msp and vice versa. Since Monte Carlo simulations are restricted to finite
samples, the standard procedure to avoid these shortcomings due to finite-size effects is
to average the absolute value of the order parameter [38]. In this context, the appropriate
order parameter is the mean absolute magnetization of transverse columns at constant
temperature, i.e.

〈|m|〉(y) =

〈
1

L

∣∣∣∣∣∑
x

Sxyz

∣∣∣∣∣
〉
z

, (3)

where 〈· · ·〉z denotes averages along the growth direction z > 0 within the stationary
region. Figure 3 shows plots of the mean absolute magnetization as a function of the layer
temperature for different system sizes in the range 12 ≤ L ≤ 96. For any given system
size, at low temperatures the system grows ordered and the magnetization is close to
unity, while at higher temperatures the disorder sets on and the magnetization becomes
significantly smaller. However, fluctuations due to the finite system size prevent the

doi:10.1088/1742-5468/2012/08/P08006 6

http://dx.doi.org/10.1088/1742-5468/2012/08/P08006


J.S
tat.M

ech.(2012)
P

08006

Nonequilibrium critical behavior of magnetic thin films grown in a temperature gradient

Figure 3. Mean absolute magnetization as a function of the layer temperature
for different system sizes, as indicated.

magnetization from becoming strictly zero above the critical temperature, so the transition
between the low-temperature ordered phase and the high-temperature disordered phase
becomes smoothed out and rounded. As expected, larger systems are less affected by
finite-size effects and display sharper transitions.

Strictly speaking, however, these results just show evidence of pseudo-phase
transitions, which might be precursors of true phase transitions taking place in the
thermodynamic limit. In the following, we will characterize in more detail this pseudo-
critical phenomenon by measuring other observables on finite-size systems. In section 3.2,
we will use standard finite-size scaling procedures to establish the existence of a non-trivial
critical temperature in the L→∞ limit, as well as to calculate critical exponents that
describe the behavior of the infinite system at criticality.

Let us now consider the magnetic susceptibility χ, given by

χ =
L2

T
(〈m2〉 − 〈|m|〉2). (4)

For equilibrium systems, the susceptibility is related to order parameter fluctuations by the
fluctuation-dissipation theorem. Although the validity of a fluctuation-dissipation relation
in the case of a nonequilibrium system is less evident, we will assume equation (4) to hold
also for the MEM. Indeed, as shown in earlier studies of nonequilibrium spin models [39,
40], this definition of χ proves very useful for exploring critical phenomena under far-
from-equilibrium conditions. In section 3.2, we will characterize the critical behavior in
the thermodynamic limit through critical exponents and finite-size scaling relations by
applying the equilibrium theory to our far-from-equilibrium model.

Figure 4 shows plots of χ versus T for different system sizes, as indicated. As
with the thermal dependence of the order parameter shown in figure 3, the peaks of
the susceptibility become rounded and shifted, indicating the existence of pseudo-phase
transitions in finite-size MEM thin films. Increasing the system size, the peaks become
sharper and higher, as expected for a critical system.

Since the results presented thus far considered a fixed gradient between the
temperatures T1 = 0.5 and T2 = 1.5, let us now investigate the effects of changing the
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Figure 4. Susceptibility as a function of the layer temperature for different system
sizes in the range 12≤ L≤ 96. As expected for a critical system, the peaks become
sharper and higher as L is increased.

gradient span ∆T ≡ T2 − T1. With this aim, we keep the same temperature for the
thermal bath at the cold end (T1 = 0.5) and consider a substantially higher temperature
for the thermal bath at the hot end (T2 = 2.5).

Figure 5 compares the mean absolute magnetization for these two different gradient
ranges (i.e. ∆T = 1, 2) for systems of size L = 12 and L = 96. We observe that increasing
the gradient span shifts the magnetization profiles towards higher temperatures. That is,
the temperature of a given layer does not uniquely determine its degree of order, since the
mean magnetization of the layer also depends on the overall gradient span under which
the film grows. Similar shifts towards higher temperatures are also seen in higher-order
moments of the order parameter probability distributions, such as the susceptibility and
Binder’s fourth-order cumulant (not shown here for the sake of space). Alternatively, we
can compare systems of different sizes and gradient spans such that the local gradients
δ ≡∆T/L are the same. The inset to figure 5 shows a comparison between a system of size
L = 16 and gradient span ∆T = 1 (dashed lines) and another system of size L = 32 and
gradient span ∆T = 2 (dotted lines), both of which have the same local gradient δ = 1/16.
The solid line corresponds to the mixed case L= 32 and ∆T = 1 (i.e. δ = 1/32). We observe
that the systems with the same local gradient have similar magnetization in layers at
intermediate temperatures (i.e. approximately in the range 0.8 ≤ T ≤ 1.3). However, the
magnetization profiles for equal-δ systems differ noticeably in layers closer to the borders
of the sample.

The arrows in figure 5 show that the shifts for smaller systems are significantly larger
than the corresponding shifts for larger systems. Defining the finite-size pseudo-critical
temperature Tc(L) as the temperature corresponding to 〈|m|〉 = 0.5, the shift for L = 12
is ∆Tc = 0.18, while the corresponding shift for L = 96 is ∆Tc = 0.07. This observation
suggests that differences arising from changing the gradient span might just reflect finite-
size effects that vanish in the L→∞ limit. In section 3.2, we study the critical behavior
of MEM films and confirm that, in fact, these differences are merely finite-size effects that
become irrelevant in the thermodynamic limit.

doi:10.1088/1742-5468/2012/08/P08006 8
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Figure 5. Comparison of magnetization profiles 〈|m|〉 versus T for different
gradient spans (∆T = 1, 2) and system sizes (L = 12, 96). The arrows indicate
the corresponding shifts in the finite-size critical temperature Tc(L). Inset:
magnetization profiles for systems with the same local gradient δ = 1/16, namely
L = 16, ∆T = 1 (dashed line) and L = 32, ∆T = 2 (dotted line). For comparison,
the mixed case L = 32, ∆T = 1 (solid line) is also shown.

3.2. Characterization of gradient-driven critical behavior in the thermodynamic limit

So far, we have found evidence for the existence of a gradient-driven order–disorder
phase transition from the analysis of order parameter probability distributions, the order
parameter mean absolute value (magnetization) and its fluctuations (susceptibility) in the
growth of finite-size magnetic films. In this section, we apply standard finite-size scaling
techniques to show the existence of this phase transition in the thermodynamic limit
and to determine critical exponents that characterize the system’s critical behavior and
universality class.

The Binder cumulant, defined by

U4 = 1− 〈m4〉
3〈m2〉2

, (5)

is a fourth-order cumulant dependent on the variance and the kurtosis of the order
parameter probability distribution. One important property of the Binder cumulant is
that, for large system sizes, the low-temperature, ordered region tends to the value 2/3,
while the high-temperature, disordered region tends to 0. Thus, in the thermodynamic
limit, the function becomes discontinuous exactly at the critical temperature. Moreover,
since for second-order phase transitions the scaling prefactor of the cumulant is
independent of the sample size, plots of U4 versus the control parameter lead to a common
(size-independent) intersection point that corresponds to the location of the critical value
of the order parameter in the thermodynamic limit [41].

Figure 6 shows the Binder cumulant as a function of the layer temperature for different
system sizes in the range 12 ≤ L ≤ 96. The inset to figure 6 shows a detailed view of the
same data for the largest lattices (32 ≤ L ≤ 96), where the intersection region is indicated
by a gray vertical strip. Based on this observation, we determine the critical temperature
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Figure 6. Binder cumulant as a function of the layer temperature for different
system sizes, as indicated. The inset shows the cumulant intersections for the
larger systems (32 ≤ L ≤ 96), which determine Tc = 0.84(2).

in the L→∞ limit as Tc = 0.84(2). Interestingly, this value is significantly higher than the
corresponding critical temperature for the MEM growing in an homogeneous thermal bath
(i.e. in the absence of a temperature gradient), namely T hom

c = 0.69(1) [34]. In section 3.3,
we will explore the growth dynamics and explain qualitatively this shift in the critical
temperature as due to ordering effects caused by a net transverse growth bond flux induced
by thermal asymmetries.

Notice also that, by fixing the temperature range (i.e. the temperatures T1 and T2) and
increasing L, we are effectively considering different gradients δ = (T2−T1)/L that become
smaller as L is increased. Figure 6, which shows a fixed point in the Binder cumulants as
the gradients are changed, provides therefore quantitative evidence for the existence of a
gradient-independent phase transition taking place at the temperature Tc.

According to the finite-size scaling theory, developed for the treatment of finite-size
effects at criticality under equilibrium conditions [42, 43], the difference between the true
critical temperature, Tc, and the effective pseudo-critical one, Tc(L), is given by

|Tc − Tc(L)| ∝ L−1/ν , (6)

where ν is the exponent that characterizes the divergence of the correlation length at
criticality. As mentioned above, we define the finite-size pseudo-critical temperature Tc(L)
as the temperature corresponding to 〈|m|〉 = 0.5.

Let us point out that, given the lack of a comprehensive theory of nonequilibrium phase
transitions, concepts and definitions developed in the context of equilibrium phenomena
are customarily borrowed and applied to far-from-equilibrium phenomena as well. For a
review of standard methods, see e.g. [44]–[46]. Indeed, although this approach is ad hoc
and lacks the theoretical foundations of equilibrium systems, it has been used extensively
in the literature and has become a powerful means of advancing our knowledge within
the realm of nonequilibrium phenomena. For instance, numerical methods such as Monte
Carlo simulations or series expansions are restricted to finite systems and it is therefore
important to understand how far finite-size effects influence the properties of the system.
As known from equilibrium statistical mechanics, finite-size effects are particularly strong
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Figure 7. Log–log plots of the finite-size pseudo-critical temperatures Tc(L) as a
function of the inverse of the system linear size, L−1, for ∆T = 1 (filled circles)
and ∆T = 2 (open circles). By means of standard finite-size scaling analysis, we
obtain the critical exponent ν = 1.53(6) (see more details in the text). Inset: plot
of 〈|m|〉×Lβ/ν versus |T −Tc|×L1/ν (with β = 0.26) showing a data collapse for
∆T = 1 and different system sizes in the range 32 ≤ L ≤ 96.

close to the critical point, where the spatial correlation length becomes comparable to
the linear dimensions of the system. By introducing the system size as an additional
parameter, finite-size scaling laws are used to characterize the steady state of finite far-
from-equilibrium systems through appropriate scaling exponents, such as, for instance, the
exponent ν in equation (6) above. Moreover, this procedure allows us to define universality
classes of nonequilibrium systems, as reviewed e.g. in [47]–[49].

Figure 7 shows log–log plots of the finite-size pseudo-critical temperatures Tc(L) as a
function of the inverse of the system linear size, L−1, for different gradients and system
sizes, as indicated. By rewriting the finite-size scaling relation as

Tc(L) = Tc + A× L−1/ν , (7)

we performed different least-squares fits to the data using the mean, upper-bound and
lower-bound values for the critical temperature in the thermodynamic limit. The nonlinear
least-squares fitting procedure was implemented using the Levenberg–Marquardt
minimization method [50] and the results from each independent fit are reported in
table 1. The errors in the table are determined by the fitting algorithm and take into
account the statistical errors for each datapoint. Figure 7 shows that the finite-size scaling
relation fits the data very well within error bars for the range of values for the critical
temperature that was derived from the intersection of Binder’s cumulants. From these
fits, we obtain the critical exponent ν = 1.53(6), where the error bars reported reflect the
errors derived from the evaluation of Tc as well as the statistical errors. Notice that the
data for different gradients tends to converge in the L→∞ limit, therefore confirming
that differences arising from changing the gradient are finite-size effects. On the other
hand, finite-size scaling theory predicts that plots of 〈|m|〉Lβ/ν versus |T − Tc|L1/ν for
different lattice sizes should collapse near the critical region. The inset to figure 7 shows
the data collapse obtained by using β = 0.26 (that is determined from the hyperscaling
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Table 1. Results from fitting the data to the finite-size scaling relation,
equation (7).

∆T Tc A ν

1 0.82 2.86(3) 1.54(2)
1 0.84 2.90(3) 1.49(2)
1 0.86 2.78(3) 1.48(1)
2 0.82 3.70(3) 1.58(1)
2 0.84 3.65(3) 1.56(2)
2 0.86 3.66(4) 1.53(2)

relation, as explained below) with two separate branches corresponding to the low- and
high-temperature regions.

An additional characterization of the critical behavior of this system can be obtained
by calculating the critical exponent γ, which describes the divergence of the susceptibility
at the critical point. Using again the finite-size scaling theory [42, 43], the exponent ratio
γ/ν is related to the peak of the susceptibility measured in finite samples of size L by

χmax ∝ Lγ/ν . (8)

The symbols in figure 8 correspond to the maxima of χ plotted against the system
linear size for different gradients, as indicated, while the solid lines are fits to the data using
the scaling relation from equation (8). Statistical errors for each datapoint are smaller
than the symbol size in the figure. The fitting procedure (which, as mentioned above,
was implemented as a nonlinear least-squares algorithm using the Levenberg–Marquardt
minimization method [50]) yields γ/ν = 1.66(3), where the error bars reflect the statistical
errors from the fits. Using this ratio and the value already obtained for ν, we determine
γ = 2.54(11). The insets to figure 8 display plots of χL−γ/ν versus |T −Tc|L1/ν for ∆T = 1
and different lattice sizes in the range 32 ≤ L ≤ 96. Using the critical temperature as
determined by the susceptibility peaks, the data collapse is shown separately for (a)
the low-temperature branch and (b) the high-temperature branch. In the former case,
data from low-temperature layers near T1 = 0.5 depart from the collapse and have been
removed. However, the collapse near the critical region is remarkable and agrees very
well with the expectations from the finite-size scaling theory. By replacing the exponents
ν and γ in the hyperscaling relation dν − 2β − γ = 0 with d = 2, we determine the
exponent β = 0.26(8), where the error is determined from standard error propagation
applied to the hyperscaling relation. Recall that we anticipated this value of β when we
considered the data collapse of the scaled magnetization (see the inset to figure 7 above).
The excellent data collapse near the critical region confirms the consistency and robustness
of the obtained results.

As a summary, Binder’s cumulant method and finite-size scaling analysis allowed us to
characterize quantitatively the critical behavior of nonequilibrium magnetic films growing
in a temperature gradient. We found that differences arising from changing the gradient
are due to finite-size effects that vanish in the thermodynamic limit. The system’s critical
temperature is Tc = 0.84(2), significantly higher than the critical temperature for films
grown in an homogeneous thermal bath, T hom

c = 0.69(1) [34]. The critical exponents are
ν = 1.53(6), γ = 2.54(11), and β = 0.26(8). Based on our findings, we conjecture that
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Figure 8. Log–log plots of the susceptibility maxima as a function of the system
linear size for ∆T = 1 (filled circles) and ∆T = 2 (open squares), where statistical
errors for each datapoint are smaller than the symbol size. The solid lines are
finite-size scaling fits that yield γ/ν = 1.66(3). The insets display plots of χL−γ/ν

versus |T − Tc|L1/ν (for the ∆T = 1 case) showing separately the data collapse
for (a) the low-temperature branch and (b) the high-temperature branch.

magnetic Eden films growing in a temperature gradient belong to a new universality class
characterized by critical exponents ν = 3/2, γ = 5/2, and β = 1/4. In contrast, the critical
exponents for magnetic Eden films grown in an homogeneous bath agree within error bars
with the exact exponents for the Ising model in d = 2 [34], namely ν = 1, γ = 7/4, and
β = 1/8.

3.3. Growth bond model and bond flux asymmetries

In this section, we explore the growth dynamics by means of a simple bond representation.
Let us recall that the MEM’s growth process adds new spins, which are deposited one by
one to the growing cluster. Although voids and holes may form within the bulk, ultimately
all sites become filled. Hence, to each pair of neighboring sites, we can assign a directed
bond that points from the earlier occupied site to the later occupied one. The components

of the bond flux field ~φ at a site (x, y, z) are defined as:

φx(x, y, z) = b[(x, y, z), (x+ 1, y, z)],

φy(x, y, z) = b[(x, y, z), (x, y + 1, z)],

φz(x, y, z) = b[(x, y, z), (x, y, z + 1)],

(9)

where b[s1, s2] = 1 if the bond points from s1 to s2, and b[s1, s2] = −1 if the bond points
from s2 to s1.

Figure 9 shows the x-, y-, and z-components of the mean bond flux 〈~φ〉 as a function
of the gradient span ∆T for L = 32 and T1 = 0.5. As expected from the symmetry along
the transverse x-direction, there is no net bond flux in x: 〈φx〉 = 0 regardless of ∆T . For
∆T = 0, the system is also symmetric along y, so no net bond flux is observed. When
a gradient is applied, however, this symmetry is broken. Since the growth probabilities
depend on the Boltzmann factor exp(−∆E/T (y)), where T (y) is the layer’s temperature,
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Figure 9. Mean growth bond flux components as a function of the gradient span
∆T for L = 32 and T1 = 0.5. Asymmetries due to the temperature gradient and
the substrate geometry are responsible for net bond fluxes along the y and z
directions. Along the transverse direction x the system is fully symmetric, so no
net bond fluxes are observed regardless of ∆T .

the thermal asymmetries introduced by the gradient favor spin deposition on the colder
layers. This phenomenon is captured by the observed net bond flux 〈φy〉 > 0. Indeed, as
shown in figure 9, the thermal asymmetries cause 〈φy〉 to grow steeply up to 〈φy〉max ≈ 0.75
followed by a moderate decrease for larger gradients, which is due to the onset of bulk
disorder within the hotter layers. Since the net transverse growth bond flux is directed
from the ordered (cold) layers towards the disordered (hot) ones, this gradient-induced
transverse ordering mechanism causes the system’s critical temperature to increase from
T hom

c = 0.69(1) to Tc = 0.84(2). On the other hand, for ∆T = 0, 〈φz〉 = 1 due to the
longitudinal asymmetries in the substrate (i.e., the semi-infinite strip geometry constrains
the system to grow along the z > 0 direction). However, when the transverse gradient is
applied, two effects contribute to decrease 〈φz〉: (i) the onset of the transverse bond flux,
which creates transverse domains in the active perimeter and causes some of the added
spins to grow backwards; (ii) the bulk disorder induced in the hotter layers (which also
causes 〈φy〉 to decrease, as discussed above).

The mean fluxes shown in figure 9 were averaged over sites at different temperatures.
In order to gain further insight, let us now investigate the dependence of the bond fluxes on
the layer temperature T (y) = T1+(y−1)×(T2−T1)/(L−1) (where 1≤ y ≤ L). Since we are
considering different gradient spans for a fixed system size, it is actually more convenient
in this case to plot the bond fluxes as a function of the transverse coordinate y. We already
observed that the transverse bond flux along x is null regardless of temperature, so we
will focus on the growth bond fluxes along the y- and z-directions. Figure 10(a) shows the
upwards bond flux 〈φy(y)〉 versus y for L = 32, T1 = 0.5, and different gradient spans ∆T ,
as indicated. In the absence of a gradient, the flux is directed downwards at the bottom
and upwards at the top, yielding zero net bond flux. Indeed, because of the open boundary
conditions, empty perimeter sites at the confinement walls experience a missing-neighbor
effect and the system grows preferentially along the center of the film as compared to
the walls. When a gradient is applied, the flux grows steeply in the upwards direction, as
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Figure 10. Bond flux components as a function of the transverse coordinate y/L
for L = 32, T1 = 0.5, and different gradient spans, as indicated: (a) transverse
flux along y; (b) longitudinal flux along z.

expected. However, for larger gradients, the hotter thermal baths are capable of inducing
disorder in the bulk and partially break the upwards bond flux on the upper layers. Indeed,
this phenomenon causes the overall bond flux 〈φy〉 (averaged over all layers) to decrease
for large values of ∆T , as discussed above. Similarly, figure 10(b) shows the forward bond
flux 〈φz(y)〉 versus y for L = 32, T1 = 0.5, and different values of ∆T , as indicated. For
∆T = 0, there is a slight missing-neighbor effect for the sites near the confinement walls.
Since forward growth is mostly driven by the substrate asymmetry, this effect is much less
noticeable than in the flux along y. When the gradient is applied, two effects contribute to
reduce the longitudinal flux, as discussed above. One of them, which is dominant for small
gradients, is due to the formation of transverse domains along y, causing some backwards
deposition when the bulk is filled in. The other mechanism, which is dominant for larger
gradients, is due to the onset of bulk disorder in the hotter layers.

Previously, we pointed out the fact that the gradient-driven order–disorder phase
transition occurs at a temperature that is significantly higher than the corresponding
critical temperature for the MEM growing in an homogeneous thermal bath (i.e. in the
absence of a temperature gradient). The results presented in this section allow a qualitative
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Figure 11. Interface width as a function of time, where the time unit is the
deposition time of L2 spins. Inset: log–log plot of the saturation width, wsat, as
a function of system size. The statistical errors are smaller than the size of the
symbols. The fit to the data is shown by the solid line and agrees with a linear
scaling wsat ∝ L (more details in the text).

explanation for the shift in the critical temperature. Indeed, the temperature gradient
breaks the transverse symmetry along the y-direction, causing the onset of a net transverse
growth bond flux. This flux is directed from the ordered layers (that grow at T < Tc)
towards the disordered layers (that grow at T > Tc), thus expanding the low-temperature
ordering effects across layers at higher temperatures. This gradient-induced transverse
ordering mechanism increases the system’s critical temperature.

3.4. Scaling behavior of the growth interface

According to the analysis presented in section 3.3, the system’s critical temperature is
increased due to gradient-induced transverse ordering mechanisms that originate in the
cold layers. It could be argued, however, that, since the distance between the cold layer
at T1 and a layer at a fixed temperature T > T1 becomes larger as L is increased (while
keeping fixed the gradient span ∆T ), then the transverse flux effects may become weaker
and eventually negligible in the large-L limit. In this section we show that the growth
interface is self-affine and its shape is stable and independent of size. Therefore, we confirm
that the effects described in section 3.3 are still relevant in the thermodynamic limit.

In order to track the evolution of the growth interface, we compute the position of the
perimeter sites in the active region every time a monolayer of L2 spins is deposited. The
interface width at time t is defined by

w(t) =

√√√√ 1

Np

Np∑
i=1

(zi(t)− zc(t))2, (10)

where the sum is taken over the Np perimeter sites in the active growth region, zi is the
longitudinal coordinate of the ith perimeter site, and zc = (1/Np)

∑
izi is the center of the

interface. Figure 11 shows the interface width as a function of time for different lattice
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Figure 12. Collapse of the scaled average growth profile in the stationary regime
for different lattice sizes, as indicated.

sizes in the range 12 ≤ L ≤ 96, where the time unit corresponds to the deposition of L2

spins. After a short transient period, the interface reaches a stable saturation width, wsat,
analogously to other surface growth phenomena [51, 52]. The inset to figure 11 shows the
dependence of wsat on the system size L, where the statistical errors are smaller than
the size of the symbols. The fit to the data (solid line) shows that wsat ∝ Lα, where the
roughness exponent is α = 1.01± 0.01. That is, the saturation width scales linearly with
the system size.

By subtracting the interface center, zc, we can compute the average interface profile
in the stationary regime, as shown in figure 12. We find that, when scaled by the mean
interface width, interface profiles for different system sizes collapse into a universal shape
for the growth interface. This nearly linear universal shape is qualitatively consistent with
the roughness exponent α = 1, as has quantitatively been determined. In passing, notice
also that this universal profile shows a good agreement with the instantaneous snapshot
displayed in figure 1. Thus, we conclude that the active growth interface is self-affine
and has universal features: the detailed analysis of bond flux asymmetries presented in
section 3.3 for a fixed lattice size (L = 32) remains valid for larger systems. In particular,
our analysis focused on the influence exerted by the low-temperature layers into higher-
temperature layers, which therefore is a gradient-induced growth mechanism still relevant
in the thermodynamic limit.

In addition to the roughness exponent α, self-affine interfaces are also characterized
by a fractal dimension df . In fact, within short length-scales such that ∆z � `, where
∆z is the longitudinal interface distance along the growth direction between two points
separated by a transverse distance `, the fractal dimension is df = 2− α [52]. In the long
length-scale limit, moreover, the fractal dimension of the self-affine interface is df = 1,
irrespective of its roughness [52]. Therefore, we conclude that the growth interface of the
MEM in a thermal gradient is df = 1 at both short and long length-scales. Indeed, these
conclusions are in full agreement with the nearly linear shape of the growing interface that
is consistent with a unitary fractal dimension at all length-scales, as seen in figure 12.
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Here, it is useful to compare the obtained results with those from related, well-
studied growth models. For the standard MEM growing in a homogeneous temperature
bath at high temperatures, the attachment of spins is a stochastic (random) process
that becomes independent of the interaction energy and the temperature [33]. Thus,
in this limit, the growth interface of the standard MEM [33]–[35] agrees with that of
the classic Eden model [36], which is well known to belong to the Kardar–Parisi–Zhang
(KPZ) universality class [52]. The most accurate simulation results for the KPZ model in
(2+1)-dimensions yield α = 0.393±0.003 [53], which agrees well with some of the formerly
reported values for KPZ [54] and the Eden model [55]. Using this value for the roughness,
the fractal dimension of the growth interface of the MEM in an homogeneous thermal
bath at high temperatures crosses over from df ' 1.6 (at short length-scales) to df = 1
(at long length-scales). Moreover, we can safely expect that the self-affine properties of
the growth interface of the standard MEM (in an homogeneous bath) be independent of
the temperature within a wide range around and below the critical temperature, at least
insofar as the occurrence of a layering/roughening transition, in the sense of that observed
in the three-dimensional Ising model [56, 57], can be neglected. Therefore, we conclude
that the fractal and self-affine characteristics of the growth interface of the MEM in a
constant temperature bath are quite different from those of the same model growing in a
temperature gradient.

On the other hand, due to the fact that the MEM grown under a temperature-
gradient constraint exhibits a second-order transition, one may also consider the self-affine
properties of the interface between the ordered and the disordered phases. Although for
systems under equilibrium conditions a useful (alternative) approach is the evaluation of
the damaged interface [23], the damage-spreading technique cannot straightforwardly be
applied for the evaluation of an interface in an irreversible growth model. Furthermore,
the implementation and application of a cluster counting algorithm [12, 15, 16, 18, 19, 21,
22, 58, 59] to our model would require a formidable computational task that is beyond the
aim of this paper. Additional shortcomings for this kind of calculation are the definition of
the suitable cluster (e.g. Swendsen–Wang versus physical clusters) and the occurrence of
noticeable corrections to scaling that one needs to evaluate in order to obtain reliable
exponents [15], which is also a task that lies beyond our computational capabilities.
However, from heuristic arguments based on the standard scaling relationship αord−dis =
ν/(1 + ν) [12, 15, 23], where αord−dis is the roughness exponent of the order–disorder
interface, we can conjecture that αord−dis = 3/5, which yields a self-affine order–disorder
interface with short length-scale fractal dimension dord−dis

f = 7/5. For comparison, by
applying the same scaling relationship to the standard MEM growing in an homogeneous
thermal bath, we obtain αord−dis = 0.51± 0.09 and dord−dis

f = 1.49± 0.09. Thus, although
the growth interface is very significantly affected by the temperature gradient compared
to the thermally homogeneous system, the geometry of the order–disorder interface is not
so markedly affected by the gradient constraint and the results for both systems agree
within error bars.

4. Conclusions

In this work, we studied magnetic thin films growing under far-from-equilibrium conditions
in (2 + 1)-dimensional strip geometries, where a temperature gradient is applied across
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one of the transverse directions. We modeled the thin film growth process by means
of extensive Monte Carlo simulations performed on the magnetic Eden model (MEM),
in which spins are deposited on a growing cluster with probabilities dependent on a
ferromagnetic, Ising-like configuration energy.

Firstly, we studied the thermal dependence of order parameter probability
distributions, the order parameter mean absolute value (magnetization), the order
parameter fluctuations (susceptibility) and its higher moments (Binder cumulant) on
finite-size magnetic films, which showed the existence of gradient-driven pseudo-phase
transitions. Secondly, we applied Binder’s cumulant method and finite-size scaling analysis
in order to characterize quantitatively the critical behavior of MEM films growing in
a temperature gradient. The system’s critical temperature is Tc = 0.84(2), significantly
higher than the MEM’s critical temperature when growing in an homogeneous thermal
bath, namely T hom

c = 0.69(1) [34]. The critical exponents are ν = 1.53(6), γ = 2.54(11), and
β = 0.26(8), which also differ from the MEM’s exponents in the absence of a temperature
gradient [34]. By changing the gradient span, we observed finite-size effects that vanish in
the thermodynamic limit. Hence, the critical temperature and exponents are universal for
MEM films growing in a temperature gradient. We also investigated the system’s growth
dynamics by means of a bond model. We found that the interplay of geometry and thermal
bath asymmetries leads to growth bond flux asymmetries and the onset of transverse
ordering effects that explain qualitatively the shift observed in the critical temperature.
Finally, we analyzed the self-affine growth interface and obtained a collapse of the scaled
average growth profile in the stationary regime for different lattice sizes, which shows that
growth bond flux asymmetries play a relevant role in the model’s growth dynamics even
in the thermodynamic limit.

In the context of a great experimental and theoretical interest in magnetic systems
growing in temperature gradients, as well as a wide variety of technological applications
that benefit from these efforts, we hope that this work will contribute to the progress of
this research field and stimulate further work.
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